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Abstract

An expectation-maximization (EM) algorithm for learning sparse and overcomplete represen-
tations is presented in this paper. We show that the estimation of the conditional moments of the
posterior distribution can be accomplished by maximum a posteriori estimation. The approximate
conditional moments enable the development of an EM algorithm for learning the overcomplete
basis vectors and inferring the most probable basis coe2cients.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Overcomplete representation [8,10,7,3] is a method of <nding a representation of data
in which only a few components of the representation are signi<cantly activated at the
same time. Important applications of overcomplete representations are in blind source
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separation of more sources than mixtures [6] and sparse coding for natural data [10,7].
In learning overcomplete representations, the observed data vector x=(x1; : : : ; xN )T can
be formulated using an overcomplete basis by the following linear generative model:

x = As+ �; (1)

where the columns of the matrix A∈RN×M , where N6M de<ne the overcomplete
basis vectors, s = (s1; : : : ; sM )T is the vector of basis coe2cients, and the vector � =
(�1; : : : ; �N )T is noise which is modelled as Gaussian with zero mean and covariance
matrix 
. The basis coe2cients are assumed independent such that p(s)=

∏M
m=1 p(sm)

where p denotes the probability density function (p.d.f.) which is used throughout this
paper, and are also assumed to be as sparse as possible, i.e., only a small number of
the available coe2cients are required to represent the data. Thus, the distribution of the
basis coe2cients can be typi<ed by factorable Laplacian distribution such that [3,8]

p(s) =
(√

2
)−M M∏

m=1

exp
(
−

√
2 | sm|

)
: (2)

For simplicity, we assume in this paper that the noise covariance matrix 
 is known.
One approach for learning overcomplete representations derives from Lewicki and

Sejnowski’s gradient-based method [8] where there is a requirement for the assumption
of a low level of noise. Another one derives from Girolami’s variational method [3]
where there is an additional computational cost for computing the variational parameters
in each expectation-maximization (EM) step. Based on the EM algorithm [2], this
paper presents a method for inferring the most probable basis coe2cients and learning
the overcomplete basis vectors. The conditional moments of the intractable posterior
distribution are estimated by maximum a posteriori (MAP) estimation. Rather than
using an explicit solution for the basis coe2cients as in [4] (where coe2cients are
referred to as independent components in independent component analysis (ICA)), we
estimate the basis coe2cients by a gradient learning rule. Thus, these approximate
conditional moments enable the development of an EM algorithm for learning the
overcomplete basis vectors. This proposed EM algorithm generalizes the complete case
or regular ICA with additive noise [1,4,5].

2. Maximum a posteriori estimation

The estimation of the basis coe2cients can be accomplished by MAP estimation.
Assuming that we have observed T data samples x=x(1); : : : ; x(T ) generated according
to model (1), one obtains the log-likelihood (see Appendix A):

L(s) =
T∑
t=1

{− 1
2 (x(t)− As(t))T
−1(x(t)− As(t)) + ’(s(t))}+ C; (3)

where ’(s(t))= log {p(s(t))} is a certain nonlinear function, and C is a constant irrel-
evant to s(t). Note that this log-likelihood is essentially the log-posterior distribution,
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i.e., L(s) = log {p(s | x; A)}. Thus, this log-likelihood is essentially the joint likelihood
proposed by HyvMarinen [4] which is used to estimate A and s(t) in noisy ICA, and is
also essentially the same as the objective function proposed by Olshausen and Field
[10] as an approximation of the likelihood of A.
To infer the most probable basis coe2cients, one must maximize the log-likelihood

in Eq. (3). Taking the gradient of this log-likelihood with respect to s(t), one obtains
the gradient learning rule for the basis coe2cients

∇sL(s) = AT
−1(x − As) +∇s’(s); (4)

where ∇s denotes the gradient with respect to s and the index t has been dropped for
simplicity. Thus, the following update equation for the basis coe2cients is obtained:

sk = sk−1 + �∇sL(sk−1); (5)

where � is the learning rate and sk−1 is obtained in the previous iteration. Because
the Laplacian prior is unimodal, given the MAP coe2cient estimate ŝ inferred by the
gradient learning rule in Eq. (4), the approximate conditional moments for the Gaussian
posterior distribution, based on the Laplace approximation [8,3], are given as follows
(see Appendix B):

E{s | x(t)}= ŝ= arg max
s
L(s); (6)

E{ssT | x(t)}= H (ŝ)−1 + ŝŝT; (7)

where the Hessian of the approximate log-posterior computed at the MAP value ŝ is
denoted as H (ŝ)=−∇s∇sL(ŝ)=AT
−1A−∇s∇s’(ŝ). Note that ∇sm’(sm)=−tanh (�sm)
and ∇sm∇sm’(sm) =−� sech2(�sm) where � is a large positive constant in the case of
a Laplacian prior on sm (m=1; : : : ; M) (for details, see [8,3]). Thus, one has ∇s’(s)=
(−tanh (�s1); : : : ;−tanh (�sM ))T and ∇s∇s’(s) = diag(−� sech2(�s1); : : : ;−� sech2
(�sM )) in which diag(·) represents a diagonal matrix. It is indicated in the next sec-
tion that these conditional moments enable the development of an EM algorithm for
estimating the parameter A in model (1).

3. An EM algorithm for the parameter estimation

To derive a learning algorithm for estimating the parameter in model (1), i.e., the
matrix of basis vectors A, it is required to maximize the probability of the data gener-
ated according to model (1). For the T observed data samples x = x(1); : : : ; x(T ), one
obtains the data likelihood

p(x |A) =
∫
p(x | s; A)p(s) ds: (8)

Rather than using some approximations to this intractable integral as in [8,9], it is
desirous to employ the EM framework for estimation and inference for this form of
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linear model, as this is a most natural method for maximizing the data likelihood.
Given the approximate conditional moments of the posterior distribution, the standard
form of M-step for the parameter A emerges (see Appendix C)

Anew =

{
T∑
t=1

x(t)E{s | x(t)}T
} {

T∑
t=1

E{ssT | x(t)}
}−1

: (9)

Inserting the approximate conditional moments (6) and(7) into Eq. (9) and noting
that (�(t)+AT
−1A)−1=�(t)−1−�(t)−1AT(
+A�(t)−1AT)−1A�(t)−1, the following
update for A is obtained:

Anew =

{
T∑
t=1

x(t)ŝ(t)T
} {

T∑
t=1

(
�(t)−1−�(t)−1ATM (t)A�(t)−1+ŝ(t)ŝ(t)T

)}−1

;

(10)

where M (t)=(
+A�(t)−1AT)−1 and �(t)=−∇s∇s’(s). Note that due to the famous
convergence properties of the EM algorithm [2] each EM iteration increases the data
likelihood or leaves it unchanged such that p(x |Anew)¿p(x |Aold), where Aold is the
parameter obtained in the previous iteration.
Since ŝ(t) must be inferred in each M-step, a simple alternating variable method,

which has already been used in similar estimation tasks [4], should be derived for
inferring the most probable coe2cients and learning the parameter A. The method is
based <rst on the optimization of the objective function with respect to s(t) for <xed
A, then optimization with respect to A for <xed s(t), and so on. The optimization with
respect to s(t) for <xed A is accomplished by the gradient learning rule in Eq. (4),
and the optimization with respect to A for <xed s(t) is accomplished by the M-step in
Eq. (10). Hence, the EM procedure of the following form is obtained:

(i) Take some initial value for A0. Set s0 = (A0)+x where (A0)+ denotes the Moore–
Penrose pseudo-inverse of A0, and let k = 1. Normalize each column of A0 to
have unit norm.

(ii) Compute sk(t) by Eq. (5), using Ak−1 as the estimate of A.
(iii) Compute Ak by Eq. (10), using Ak−1 as the estimate of A and substituting ŝ(t)

by sk(t). Normalize each column of Ak to have unit norm.
(iv) Set k = k + 1, and go back to step (ii) if not converged.

It should be noted that the likelihood of linear model as given by Eq. (1) is a
highly nonlinear function of the parameter values, and as such the likelihood will have
many local optima. As was pointed out in [3] the convergence of the EM method to a
local optimum of the likelihood is guaranteed and so will be dependent on the initial
parameter values. Thus, there will be cases where the local optima may yield poor
parameter estimates, and reinitialization of the algorithm will be required.
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Table 1
SNR values in dBs: Gradient-based method, EM algorithm and variational EM algorithm

Speech sources Gradient EM Variational

1 20 24 26
2 17 21 18
3 21 22 24

4. Simulation

One potential application of learning overcomplete representations is the blind source
separation of more sources than mixtures as in [6]. To illustrate the algorithm proposed
in this paper, the same three sources of natural speech and mixing matrix as used in
[6] are employed in this experiment. The observed data is whitened before the iteration
where whitening means that the covariance matrix of x is made equal to unity, i.e.,
E{xxT} = I , which is possible by a simple linear transformation [5]. The proposed
EM procedure was randomly initialized and converged in 27 parameter updates with
the basis coe2cients being updated twice in each iteration. In this simulation, the
learning rate � was set to be 0:0005. As expected, the data likelihood monotonically
increased during the EM procedure in this simulation. The signal-to-noise ratio (SNR)
was computed for each of the inferred sources and compared with the results reported in
[6,3]. The results are shown in Table 1. The SNR values are on average improved over
those reported in [6]. Fig. 1 shows 10,000 samples of the original sources, the noisy
observations and the inferred sources after re-ordering and sign correction obtained
by the EM procedure. This simulation serves to demonstrate the ability of the EM
algorithm to learn overcomplete representations of natural data that con<rm to the
standard linear model and infer the most probable coe2cients.

5. Conclusions

We have proposed an EM algorithm for learning the basis vectors and inferring
the most probable basis coe2cients in learning overcomplete representations. The de-
velopment of an EM algorithm for estimation and inference is made possible by the
approximate conditional moments of the posterior distribution derived by modelling the
posterior as Gaussian. This EM algorithm can be considered a method for performing
standard complete linear ICA with additive noise. This proposed EM algorithm may
also be used in learning a sparse and overcomplete dictionary for observed signals and
then exploiting this sparse representation for blind source separation as was proposed
in [11]. The estimation of the noise covariance matrix using this EM framework will
be considered in our future work.



474 M. Zhong et al. / Neurocomputing 57 (2004) 469–476

0 5000 10000
-1

-0.5

0

0.5

1

0 5000 10000
-1

-0.5

0

0.5

1

0 5000 10000
-1

-0.5

0

0.5

1

0 5000 10000
-0.05

0

0.05

0.1

0.15

0 5000 10000
 -0.05

0

0.05

0.1

0.15

0 5000 10000
-0.05

0

0.05

0.1

0.15

0 5000 10000
-0.05

0

0.05

0.1

0.15

0 5000 10000-0.05

0

0.05

0.1

0.15

(a) (b) (c)

(d) (e) 

(f) (g) (h)

Fig. 1. (a–c)The three original sources. (d–e)The noisy observations. (f–h)The three inferred sources using
the EM procedure outlined.
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Appendix A. Derivation of the log-likelihood

In this paper the data samples are assumed to be statistically independent, which has
been used in many literatures [8,3,4]. Thus, the posterior of the basis coe2cients has
the following form:

p(s | x; A) =
T∏
t=1

p(s(t) | x(t); A): (A.1)
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For each data sample, Bayes’ rule implies

p(s(t) | x(t); A) = p(x(t) | s(t); A)p(s(t))∫
p(x(t) | s(t); A)p(s(t)) ds(t) =

p(x(t) | s(t); A)p(s(t))
p(x(t))

:

(A.2)

Besides, according to model (1), one obtains

p(x(t) | s(t); A) = |det(2�
)|−1=2

×exp{− 1
2 (x(t)− As(t))T
−1(x(t)− As(t))} : (A.3)

Inserting Eq. (A.3) into (A.2) and then Eq. (A.2) into (A.1), the log-likelihood in Eq.
(3) is obtained by taking the logarithm of Eq. (A.1).

Appendix B. Derivation of the approximate conditional moments

Based on the Laplace estimation [8], the posterior distribution can be modelled as
Gaussian:

p(s | x(t)) ≈ (2�)−M=2 |H (ŝ) |1=2 exp{− 1
2 (s− ŝ)TH (ŝ)(s− ŝ)} ; (B.1)

where ŝ is the MAP value and H (ŝ) is the Hessian of the approximate log-posterior
computed at the MAP value. Thus, the approximate conditional moments in Eqs. (6)
and (7) can be derived by this Gaussian posterior distribution.

Appendix C. Derivation of the M-step

To derive the M-step for the parameter A, it is required to maximize the expected
value of the complete data likelihood of the following form, given the observed data
x and the current model [2]

Q(Anew |Aold) =
T∑
t=1

∫
p(s | x(t); Aold) log{p(x(t); s |Anew)} ds; (C.1)

where Aold is the parameter obtained in the previous iteration. Setting the gradient of
Q(Anew |Aold) with respect to Anew to zero gives the new value of the parameter of the
M-step in Eq. (9).
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